Biologics Effectiveness and Safety (BEST) Initiative

Azadeh Shoaibi, PhD, MHS
CBER Sentinel Lead
FDA Center for Biologics Evaluation and Research (CBER)
On behalf of CBER Sentinel Central Team
CBER-Regulated Products: Biologics

- Vaccines (preventative and therapeutic)
- Blood (components and derived)
- Human Tissues and Cellular Products
- Gene Therapies
- Xenotransplantation Products
CBER Surveillance Priorities

• Evaluating safety of vaccination during pregnancy
• Signal detection – use of natural language processing and artificial intelligence
• Pandemic preparedness – near real-time surveillance
• Emerging infectious disease surveillance & monitoring
Biologics Effectiveness and Safety (BEST) Initiative

- CBER Active Post-market Surveillance Program
- A component of Sentinel Initiative
- Commenced in October 2017
Why the BEST Initiative?

• Biologic products’ special characteristics
 – Require special components in an active surveillance system

• Upgrading infrastructure
 – Access to EHR data sources
 – Reduce data lag
 – Easier, faster, affordable access to medical charts
 – On-demand analytic capabilities (no tools)
 – Large-scale capacity
BEST Initiative Objectives

Aim 1: Build data, analytics, infrastructure for an active, large-scale, efficient surveillance system for biologic products

Aim 2: Develop innovative methods to utilize electronic health records (EHR) effectively and establish automated adverse events reporting
BEST Initiative

Collaborators

- Regenstrief Institute
- Columbia University
- University of Colorado
- Cerner
- University of California, Los Angeles
Data Infrastructure

IBM

<table>
<thead>
<tr>
<th>Data Sources</th>
<th>Patients (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MarketScan (Claims)</td>
<td>60</td>
</tr>
<tr>
<td>CED (Linked EHR-Claims)</td>
<td>4.9</td>
</tr>
</tbody>
</table>

IQVIA/OHDSI

<table>
<thead>
<tr>
<th>Data Sources</th>
<th>Patients (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRxDx (Claims)</td>
<td>160</td>
</tr>
<tr>
<td>Regenstrief Institute (Claims and EHR)</td>
<td>19</td>
</tr>
<tr>
<td>Columbia University (EHR)</td>
<td>6.5</td>
</tr>
<tr>
<td>University of Colorado (EHR)</td>
<td>17</td>
</tr>
<tr>
<td>Cerner (EHR)</td>
<td>23</td>
</tr>
</tbody>
</table>

Acumen

<table>
<thead>
<tr>
<th>Data Sources</th>
<th>Patients (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Health Intelligence (Claims)</td>
<td>23</td>
</tr>
</tbody>
</table>
Data Quality Assessment

- Data Completeness
- Data Conformance
- Data Plausibility

Data Quality Assessment Checks
BEST Initiative: Data, Tools and Infrastructure for Surveillance of Biologics

ACCOMPLISHMENTS
IBM
IQVIA/OHDSI
Acumen

EHR Network
Reduced data lag to 3-4 months
Analytic capabilities on demand
Access to medical charts
Portal for CBER staff to access data for feasibility analyses
Improved operational efficiency and shorter turnaround time
BEST Initiative: Data, Tools and Infrastructure for Surveillance of Biologics

DESCRIPTIVE STUDIES
Vaccines

- Seasonal Influenza
- Hepatitis B
- Herpes Zoster
- Meningococcal
- Human Papillomavirus
Blood-Derived Products

• Intravenous Immunoglobulins (IVIGs)
• Antihemophilic Factor (Factor VIII)
• Anti-inhibitor Coagulant Complex
• Fibrin Sealant
• Fibrinogen Concentrate
• Alpha-1 Proteinase Inhibitors
• C1 Esterase Inhibitors
Outcomes

- Syncope
- Thromboembolic events
- Coagulation product inhibitors (Factor VIII inhibitory antibodies)
- Hemolysis
- Anaphylaxis
Special Populations

- Diabetics
- Hemophilia A
- Immunocompromised patients
Vaccine Study (Test Case)

• To test the new system, reproduced components of a published study

• **Study Objective:** To assess the risk of febrile seizures in children receiving first dose of Measles, Mumps, Rubella, & Varicella (MMRV) compared to that of MMR and Varicella administered separately on the same day
MMRV vs. MMR+V & Febrile Seizures in Children

<table>
<thead>
<tr>
<th>Study Period</th>
<th>Vaccine Safety Datalink (VSD) Study*</th>
<th>BEST: LRxDx claims database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>12-23 months</td>
<td>1-2 years</td>
</tr>
<tr>
<td>Number of MMRV Patients (n)</td>
<td>83,107</td>
<td>920,948</td>
</tr>
<tr>
<td>Number of MMR+V Patients (n)</td>
<td>376,354</td>
<td>874,900</td>
</tr>
</tbody>
</table>

Risk Windows

<table>
<thead>
<tr>
<th>Week 1-2</th>
<th>Vaccine Safety Datalink (VSD) Study*</th>
<th>BEST: LRxDx claims database</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-10 days</td>
<td>RR: 2.0 (95% CI=1.4-2.9) OR: 1.86 (95% CI=1.38-2.04)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 1-6</th>
<th>Vaccine Safety Datalink (VSD) Study*</th>
<th>BEST: LRxDx claims database</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-42 days</td>
<td>RR: 1.5 (95% CI=1.1-1.9) OR: 1.26 (95% CI=1.22-1.42)</td>
<td></td>
</tr>
</tbody>
</table>

Klein NP et al., Pediatrics, 2010
MMRV vs. MMR+V & Febrile Seizures in Children

<table>
<thead>
<tr>
<th>Study Period</th>
<th>Vaccine Safety Datalink (VSD) Study*</th>
<th>BEST: LRxDx claims database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>12-23 months</td>
<td>1-2 years</td>
</tr>
<tr>
<td>Number of MMRV Patients (n)</td>
<td>83,107</td>
<td>920,948</td>
</tr>
<tr>
<td>Number of MMR+V Patients (n)</td>
<td>376,354</td>
<td>874,900</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Risk Windows</th>
<th>Vaccine Safety Datalink (VSD) Study*</th>
<th>BEST: LRxDx claims database</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1-2</td>
<td>7-10 days</td>
<td>7-10 days</td>
</tr>
<tr>
<td>RR: 2.0 (95% CI=1.4-2.9)</td>
<td>OR: 1.86 (95% CI=1.38-2.04)</td>
<td></td>
</tr>
<tr>
<td>Week 1-6</td>
<td>0-42 days</td>
<td>0-28 days</td>
</tr>
<tr>
<td>RR: 1.5 (95% CI=1.1-1.9)</td>
<td>OR: 1.26 (95% CI=1.22-1.42)</td>
<td></td>
</tr>
</tbody>
</table>

Klein NP et al., Pediatrics, 2010
HEMOVIGILANCE STUDY

EHR Data Sources and ISBT128 Coding System
No. of Transfused Patients Identified by Billing Codes vs. ISBT128 codes

Red Blood Cells

Plasma

Platelets

ISBT128 Billing Codes
MarketScan (Claims):
- Includes more than 25% of all employer-sponsored U.S. healthcare beneficiaries
- 150 contributing employers with 200 unique carriers + 20 health plans
- Medicare supplemental plan enrollees
- Medicaid enrollees for 12 states

IBM Claims Data (MarketScan)
250 million Patients (2002-2018)

Source: IBM Watson Health, 2018
EHR Data (Explorys):

- 56 million Patients (1999-2018)
- 39+ Health Systems spanning academic centers and community practices
- ~344,000 Unique Providers
- Inpatient and outpatient encounters
- Clinical events and procedures
- Lab results
- Vital signs and other biometrics
- Medical and surgical history
- Patient-reported outcomes
- Inpatient drugs and ambulatory prescriptions

Source: IBM Watson Health, 2018
EHR Data (Explorys)
56 million Patients
(1999-2018)

IBM Claims Data (MarketScan)
250 million Patients
(2002-2018)

Source: IBM Watson Health, 2018
CED (Linked EHR-Claims Database)
Deterministically linked patients

EHR Data (Explorys)
56 million Patients
(1999-2018)

IBM Claims Data (MarketScan)
250 million Patients
(2002-2018)

Source: IBM Watson Health, 2018
CED – Gender and Age Distribution

Gender distribution (%)

- **Male**
 - CED: 45.8%
 - ACS: 49.2%

- **Female**
 - CED: 54.3%
 - ACS: 50.8%

Age distribution (%)

- **0-17**
 - CED: 12%
 - ACS: 23%

- **18-34**
 - CED: 23%
 - ACS: 23%

- **35-44**
 - CED: 15%
 - ACS: 13%

- **45-54**
 - CED: 15%
 - ACS: 16%

- **55-64**
 - CED: 18%
 - ACS: 13%

- **65+**
 - CED: 16%
 - ACS: 15%

CED: CLAIMS-EHR LINKED DATABASE
ACS: AMERICAN COMMUNITY SURVEY, AN ONGOING SURVEY BY US CENSUS BUREAU

Source: IBM Watson Health, 2018 and *ACS or American Community Survey is an ongoing survey by the U.S. Census Bureau
IBM Linked Claims-EHR Database (CED)

EHR Data (Explorys)
- 56 million Patients (1999-2018)

IBM Claims Data (MarketScan)
- 250 million Patients (2002-2018)

CED
- 4.9M

w/ Labs
- 2.9M+

Source: IBM Watson Health, 2018
CED DATABASE: PREGNANCY OUTCOMES & GESTATIONAL AGE VALIDATION
Study Objectives

1. Develop algorithms using ICD10 diagnosis codes and CPT/HCPCS procedure codes to
 a) Determine gestational age
 b) Classify pregnancy episodes as one of 4 outcomes:
 i. Full-term birth
 ii. Pre-term birth
 iii. Stillbirth
 iv. Spontaneous abortion
Study Objectives

2. Using GAIA case definitions as a reference method
 – To validate estimated gestational age and outcomes classifications
 – By comparing to clinician-adjudicated results based on review of structured CED (EHR) data elements
 – GAIA: Global Alignment of Immunization Safety Assessment in pregnancy
Study Population

- $n = 35,842 \ (100\%)$
 Pregnancy episodes identified in claims

- $n = 33,698 \ (94\%)$
 Pregnancy episodes with GA estimates in claims

- $n = 6,122 \ (17\%)$
 Pregnancy episodes with GA, LMP, or IUI/ET AND outcome in SNOMED or LOINC in EHR

- $n = 2,144 \ (6\%)$
 Pregnancy episodes without GA estimates in claims

- $n = 27,576 \ (77\%)$
 Pregnancy episodes without GA, LMP, or IUI/ET AND outcome in SNOMED or LOINC in EHR

Source: IBM Watson Health, 2018

Note: Preliminary results and subject to change
Clinician Adjudication Using Semi-Automated Chart Review

Data Abstraction
- Built-in questionnaire
- Structured components of EHR

Clinician Review
- Display GAIA-related structured EHR elements

Outcome Adjudication
- Full chart of structured EHR pregnancy episode available to clinician in detailed view

Source: IBM Watson Health, 2018
Summary

• Built a new active surveillance system for biologic products

• Incorporated multiple large sources of EHR
 – Claims & administrative databases
 – Linked EHR-claims database

• Access to EHR provides
 – Data elements for clinical data, blood coding system
 – Medical charts
Summary

• Reduced data lag to 3-4 months
• On-demand analytic capabilities
• CBER staff has access to data and tools for feasibility analyses
• Improved operational efficiency and shorter turnaround time
Acknowledgements

• CBER Sentinel Central Team
 – Kinnera Chada, PhD
 – Joyce Obidi, PhD
 – Kristin A. Sepúlveda
 – Hui-Lee Wong, PhD
 – Judith Cope, MD, MPH
• Office of Biostatistics and Epidemiology
• CBER product offices: OVRR, OBRR, OTAT

• IBM Global Business Services, IBM Watson Health Team
• Acumen Team
• IQVIA Team
• OHDSI Collaborators
 – Columbia University
 – Regenstrief Institute
 – University of Colorado
 – Cerner
 – University of California Los Angeles
Thank You